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Generalizing a previously proposed alternative D= 4 superparticle action ofa non-Brink-Schwarz type we present a new super- 
space action describing the dynamics of the non-compactified coordinates of space-time supersymmetric superstrings. An advan- 
tage of this new formulation over the standard Green-Schwarz one is that it allows for a straightforward manifestly D=4 super- 
Poincar6 covariant quantization without the need of introducing auxiliary variables or infinite number of ghosts for ghosts. Pre- 
liminary calculations show, however, that the theory, has a nonvanishing conformal anomaly if the known schemes of compacti- 
fication are assumed. 

1. Introduction 

In the past two years much efforts were devoted to 
solve the problem of  the manifestly super-Poincar6 
covariant  quant izat ion o f  the Green-Schwarz  (GS)  
superstrings [ 1,2] in D =  10 space - t ime  d imensions  
[3 -8 ] .  The main difficulty here lies in the fact that, 
due to the intr icate nature of  the per t inent  fermionic  
~c-gauge symmetry  [ 9,1 ] ( inf ini te  stage o f  reducibil-  
ity versus breaking o f  manifest  Lorentz invar iance) ,  
the GS supcrstrings cannot  be quant ized covar iant ly  
unless one introduces:  

( i )  either appropr ia te  auxil iary variables [ 3-7  ]; 
( i i )  or an infinite set of  ghosts for ghosts [8] .  
In the formalism with auxil iary variables one re- 

duces the covar iant ly  quant ized GS superstr ing to a 
free D = 2  conformal  field theory with a finite num- 
ber of  ghost fields [6 ]. However,  the corresponding 
vertex operators  [ 1,4] turn out to be nonpolynomia l  
functions of  the string fields which makes the task of  
practical ampl i tude  computa t ions  quite difficult.  On 
the other  hand, the formalism with an infinite num- 
ber of  ghosts for ghosts suffers from some problems 
[ 10] and, moreover,  this formal ism cannot  be con- 
sistently der ived from the systematic Bata l in -  
Vilkovisky procedure [ 1 1 ] with a finite stage o f  re- 
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ducibi l i ty  L by taking the l imit  L ~ .  The der ivat ion 
o f  vertex operators  and ampl i tude  calculations in the 
infinite ghosts-for-ghosts approach is also an open 
qucstion. 

The zero-mode of  the GS superstr ing - the Br ink-  
Schwarz superpart icle  [ 12 ], shares the same difficul- 
ties in the covariant  quant izat ion [13] .  Since it is 
consistently defined in any D = 2, 3, 4 (mod 8 ) (where 
there exist super-Poincar6 algebras)  one is forced to 
introduce auxiliary variables even in the lower space-  
t ime dimensions  D = 2 ,  3 ,4  (cf. ref. [14] ). On the 
other hand, it is well known that ord inary  supersym- 
metr ic  field theories ( N =  1 in D = 4 ,  N =  1,2 in D = 2 ,  
3),  some of  which arc second-quant ized versions of  
the underlying BS superparticles,  are consistently 
constructed in terms of  off-shell unconstra ined 
superfields [ 15 ] without  any dependence  on auxil- 
iary variables (unl ike the case of  N = 2 ,  3 in D = 4  
[16 ] ) .  

The latter c ircumstance raised the possibil i ty that 
a l ternat ive superpart icle  act ions in D = 4  of  a non- 
Br ink-Schwarz  type do exist which do not need aux- 
iliary variables (or  an infinite number  of  ghosts for 
ghosts)  for the sake o f  their  super-Poincar6 covariant  
quant izat ion.  Indeed, some t ime ago act ions of  this 
kind were proposed in ref. [ 17 ] within the canonical  
hami l tonian  formalism. 

In the present letter we first perform a further anal- 
ysis of  the D = 4 ,  N =  1 superpart icle  act ion of  ref. 
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[ 17 ] which describes upon second quantization the 
massless D = 4  vector supermultiplet (henceforth 
called vector superparticle action). We show that this 
action is a sum of the standard BS action plus an ad- 
ditional term which removes the problematic fcr- 
mionic K-gauge invariance and replaces it with a bo- 
sonic gauge symmetry which turns out to be the 
bosonic 2-gauge symmetry of GS [1,2]. Next, we 
generalize the action of the vector superparticle to the 
superstring case. The resulting superstring action 
similarly consists of the standard GS action plus an 
additional term leaving the superstring bosonic 2- 
symmetry as the only irreducible gauge symmetry 
companion to the usual reparametrization- and Weyl 
symmetries. This new superstring action, of course, 
describes only the dynamics of the non-compactified 
superstring coordinates. The problem of finding a 
relevant action for the appropriate internal string de- 
grees of freedom is beyond the scope of the present 
letter. In particular, it is clear that the new D = 4  su- 
perstring action proposed below cannot arise through 
the standard compactification procedure applied to 
the usual D = 10 GS action [ 18 ] which yields just the 
D - 4  GS action for the non-compact dimensions 
quantizable only non-covariantly (in the light-cone 
gauge, unless one introduces auxiliary variables). On 
the other hand, since the new D = 4  superstring ac- 
tion describes the massless vector supermultiplet in 
the point-particle limit, it is plausible to assume that 
it yields an alternative consistent manifestly super- 
Poincar6 covariant description of the non-compact 
string degrees of freedom. 

2. The vector superparticle action in D=4 

The superparticle action describing the massless 
N= 1 vector supermultiplet in D = 4  has the following 
hamiltonian (phase space) form [ 17 ]: 

S v = f  dz(puO~xU+p'~O~O,~ +/5~ O~(Ta- l lv)  , ( I ) 

Hv =2p2+ ½iz(D,.~D~'+ 13'q3a) , (2) 

where (0., () a) are anticommuting Weyl spinors, 

D.--iPo~-l~./jO '~ , O"---ip'~--ZkaBOB, (3) 

and the Weyl-spinor indices are raised and lowered 

with the help of the charge conjugation matrix 
C=  (C "p, C,~/~). The graded Poisson brackets (PB) 
among the canonical variables read 

P f Ct" {p., x"}p. = - 6 . ,  ~po, oe}PB =a~, 

{,Ooa, 0-~},,B =dE ,  (4) 

Clearly, the fermionic functions of the phase space 
variables (3) are the classical counterparts of the 
super-covariant derivatives: 

0 +i~a#~Te i3,~ = 0 +i~aa0o. (5) 
D,~ = -  00 ~ ' - 00~-a 

In eq. (2) 2 and Z are bosonic Lagrange multipliers 
for the first-class irreducible Dirac constraints 

Oo--P2=0,  0~ - ½i(D.D'~+ I3~I3~) = 0. (6a, b) 

The corresponding Dirac constraint equations of 
thc first-quantized theory for the superfield wave 
function V= V(x, O, ()): 

~i(D,~D"+I3aI3,~) V = 0 ,  02V=0 (7a, b) 

are easily recognized as the gauge-fxing condition and 
the gauge-fixed equation of motion, respectively, for 
the free Maxwell superfield V whose gauge-fixed ac- 
tion reads [ 15] (D 2= ~D,~D '~, I )2 -  = ½ I3aIS)a) 

,S~..g, i,,. + Sgf = ~ f d 4x d ' 0  VD'q32Da V 

+ ~ d4xd40[ (D2+~2)  V] 2 

-2-! ( d4xd40 V[ 02 

+ ( 1 / 0 ~ - 1 )  I(D2I)2+I32D2)] V, (8) 

and provided the choice 0~= 1 is made. 
Now, to elucidate the nature of the second hosonic 

gauge symmetry of thc action ( 1 ) generated by the 
hamiltonian constraint i (D2+ l )  2) (6b), let us pass 
to the lagrangian formalism. Substituting the explicit 
expressions for D~, l) ~ ( 3 ) into (2) and ( 1 ) and per- 
forming straightforwardly the gaussian integrations 
over the canonical momenta Pu, P~, Poa, we obtain 

Sv = f dz ( ~-~ [ O~xU- i(Taa~,p O~O/J-O,~( au )'~l~O~ ] z 

, ) + ~TZ (a,O~,O,O'~+O, OaO.O,,) . (9) 
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The first term in (9) is, of  course, the usual BS ac- 
tion. For the second bosonic gauge symmetry we have 
in the hamiltonian formalism 

6,~G = {~(D2+ I)2), G}PB= - ff'D,, 

6, (Y~ = -~-15 ~ ' 

~,~x ~' = - iff" [ (.Ta ag/j D/~ + 0,~ ( a u ) ~/~I30 ] , 

(lO) 

Inserting into eqs. (10) the expressions for (D, ,  
I) a) through the velocities 

D ~ , = - 1  0~0,, l=)e'= - 10~(Ta, (11) 
Z Z 

and rescaling the gauge parameter ~'-~c= ~:/Z, we ar- 
rive at the following gauge transformations in the la- 
grangian formalism: 

&o,~=~:o,o,,, 6 ~ g ' ~ = z 0 . j  '~, 6~x=o~(x2') ,  

6,~x"= iK[ t~'~a~aO:OB + O,~( a" ) "aO~6a ] . (12) 

Let us point out that both terms in the action (9) are 
separately invariant under the symmetry (12).  

Eqs. (12) arc readily recognized as the A-symme- 
try transformations in the usual BS formalism [2].  
There is, however, a quite significant difference in the 
role this symmetry plays in the standard BS and in 
the present fi'amework. For the BS superparticle the 
relevant additional (with respect to the reparamctri- 
zation invariance) gauge symmetr3' is the fermionic 
x-gauge symmetr3~ which reduces the number of  in- 
dependent 0-coordinates by half so that for N =  1 in 
D = 4  the BS action describes the chiral scalar supcr- 
multiplet. The tc-symmetr3~ is generated by the irre- 
ducible first-class half of  the fermionic spinor con- 
straint ~P---(D,~, O " ) = 0  and, therefore, it always 
breaks manifest Lorentz invariancc unless one intro- 
duces appropriate auxiliary variables. Thus, the A- 
gauge symmetry in the BS framework is a trivial sym- 
meu~' generated by a first-class combination i (D ~ + 
f)2 ) of  the independent constraints ( D,~, I)") .  For the 
vector superparticle, in contrast, there is no fer- 
mionic x-symmetry gauging away (in a non-covari- 
ant manner)  part o f the  O's but the constraint on the 
superfield wave function V (7a),  imposed by the ).- 
symmeuw, annihilates in a manifestly covariant way 

the chiral and the antichiral superspin zero parts of  V 
[15] nl 

3. Generalization to D = 4  superstrings 

To derive the superstring analogue of  the vector su- 
perparticle action (9),  which will describe the non- 
compactified superstring coordinates, it is most 
straightforward to start from the hamiltonian frame- 
work. Here we shall consider only the heterotic case. 

From the GS formalism it is well known that the 
analogues of  the hamiltonian first-class constraints 
(6a, b) read 

Oo ' T I . . R ( ~ ) ,  0 , - - ' , J ( ~ ) ,  ( 1 3 )  

7~(4) - ( P u - X u )  2 , (14) 

TR (¢') = ll,,HU+4i(O'~'D,~ + tT~, I3 '~) - H2 + 4itT'D 

= (Pt, +X'u)2+4(O'"po~ + 0-~/~),  (1 5) 

A(~) - ½i ( D , D " +  I3'q)a) -= - ~il3D, 16) 

where the following notations are used: 

I-lu( ~) =-l'u + X ' " -  2it77uO ' , 17) 

1 9 ( ~ )  =_ - i C - ~ P o  - ( H U +  i~,/"0') C,u0) : 18 ) 

Primes denote differentiation with respect to the ~ -  
the space-like string world-sheet parameter. Also, 
from now on we shall employ for brevity the four- 
component  Dirac (Majorana)  spinor notations in- 
stead of  the two-component Weyl notations. 

Correspondingly, the hamiltonian form of  the ac- 
tion reads 

shcter°ti~ = I d'r d£(Pj, O,X~'+poO~O 

- -AL ' Ik - -AR J'R--Z A ) , ( 1 9 )  

where AL.R and 2' denote the bosonic Lagrange mul- 
tipliers. All constraints ( 14 ) - (16 )  in eq. (19) are ir- 
reducible and first-class with the following PB algebra: 

[TL.R(~) ,  TL.R(r/)) , , , ,  = T 8 [ TL,R(~.) r~ ' (~ - - r / )  

+ ½ TL,R(~) c~(c[-~/) ] ,  (20) 

#~ In D =  3 the x- and ,;.-symmetries become in some sense equiv- 
alent. Both, the D = 3  analogue of the action (9): L = ( 1 /  
4).) (~)~cu + iO,,TU"~l~Op)2+ ( i /2z)  ~,0~3,0", as well as  the  ordi- 
nary D = 3  BS action, describe the same D = 3  scalar 
supermultiplet. 
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{ -  ½il3D(~), - ½il)D(r/) }vB 

= 2 i H " ( ~ ) I D ( ~ ) ( C T u ) D ( ~ ) ]  ?~(~-r / )=0,  (21) 

1.e. 

{A(~), A(r/) }pB = 0 .  (22) 

To compute (21) we have used the well-known PB 
for D(~) (18): 

{D(~), D(r/) },, s 

= - 2iH~(¢) (yuC -~ ) 8 ( ~ - r / ) ,  (23) 

and the fact that C7. is a symmetric 4)<4 matrix 
whereas D(4) (18) is an anticommuting spinor on 
the classical level. 

Now, upon substituting the explicit expressions 
( 14)- (18)  into the action (19), one gets an expres- 
sion quadratic with respect to both canonical mo- 
menta PU and Po (unlike the GS case where the de- 
pendence on Po is linear). After straightforward 
gaussian integration over P/~ and Po we obtain 

sheterotic ~?hctcrotic 
~ ,o, G S 

_ i f dr d ~ x / ~  ]:mn(O,n(JOnO) (24) 
2 

Here the following notations are used: 

f dr d~ x/"g[--gnmOnXUOmX u Sh~t~o~i¢ 1 
GS ~ ~, 

+ 4iP"_ ~ OmXl'(~)~tOn O) + g " " ( ~ u O . O )  (@uO.,O) ] 
(25) 

is the ordinary hcterotic GS action where the world- 
sheet metric g.m (n, m = 0 ,  1 ) is expressed through 
the Lagrange multipliers ALR in (19) as 

~ / - -g  gOO = _ [2(AL+AR) 1 - ' ,  

~/~__g g 0 |  = (A R - - A L )  (AL -t- AR )  - t  , 

x / ~ - g  g l, = 8ALAR (At. +AR ) - l . (26) 

P~" denote the covariant world-sheet chiral 
projectors 

l(  ~'~ "~ 
pm.._n= 5 gmn+_ x / - - g ] "  (27) 

In the second non-GS term of the action (24) Y " "  
denotes a symmetric traceless tensor which is chiral 
with respect to both world-sheet indices: 

p T k  v .  _ o . k  Vm y m .  --k----+ --k = , (28) 

and whose sole independent component is just the 
inverse of  the Lagrangc multiplierz from ( 19): 

1 x/-_g ,,o,,,,o ~ = - + . + Ym,,, (29) 
Z 

AS in the superparticle case (section 2), it is straight- 
forward to deduce in the lagrangian formalism the 
gauge symmetry generated by the second bosonic su- 
perstring constraint A (~) ( 16 ): 

& O = x " O , . O ,  (30) 

<~xXU=iKm(O'/uOmO ) , (31) 

rpo  (eoq ] 
- l  [ ~ 6 O ' ( l ' ~ x ' ) - O k \ I S ~ ° - ° ]  ( I "~ x ' )  _ (32) 

where K" is a self-dual world-sheet vcctor: ~¢'~= 
P"g" x . .  

One immediately recognizes (30) and (31) as the 
GS bosonic 2-symmetry transformations [ 2 ]. 

Let us add some preliminary remarks about the 
quantization of the superstring action (24) within the 
operator (canonical quantization) formalism. Forlhe 
Virasoro central charge in the supersymmetric right- 
moving sector one gets 

CR = 4  (from Xu) +4)< ( - 2  ) (from (0, Po) ) 

- 2 6  (from (b, c) ghosts) 

- 2 6  (from (~, ~) ghosts) 

= - 5 6 .  ( 3 3 )  

In eq. (33) it is assumed that the standard separation 
into creation-annihilation pairs is assigned to the 
modes of the (0, po)-fields and the 2-symmet~ ghosts 
(r, ~) as world-sheet fields ofconformal spins (0, 1 ) 
(cf. eq. (15) ) and ( - 1,2), respectively. In the purely 
bosonic left-moving sector as usual cx = 4 -  26 = - 22. 

Also, due to the normal ordering in the quantum 
commutator  of  the 2-symmetrT generators one gets a 
purely anomalous non-zero right-hand side in (22): 

[ - ~ i  :I3D(~):,  --½i :I7)D(q):] 

4i 
= -  --[ :TR(~): /~ '(~--r /)  + ~ :T~: ( ~ ) d ( ~ - r / )  

7r 

- (CR/127r) d '"(~--q) ] .  (34) 
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The  mos t  i m m e d i a t e  ques t ion  is, o f  course,  the one  

o f  how the anomal i e s  c o m m i n g  f rom the  internal  su- 

pers t r ing degrees o f  f r e edom could  cancel  these c- 

n u m b e r  anoma l i e s  ( the  con fo rma l  (33 )  and the 2- 

symmetr3, (34 )  ones ) .  In par t icular ,  i f  one  adds  a set 

o f  non-chi ra l  in ternal  con fo rma l  fields with c =  22 to 

cancel  the l e f t -mov ing  con fo rma l  a n o m a l y  and part  

o f  the r i gh t -mov ing  one,  then the r e m a i n i n g  u n c o m -  

pensated r ight -handed Virasoro  charge becomes  - 34. 

It then canno t  be cancel led  i f  the c o m p a c t i f i c a t i o n  is 

ach ieved  on a lat t ice [ 19] s ince the  one- loop  m o d u -  

lar i nva r i ancc  requi res  that  the central  charge o f  the 

compac t i f i ed  r i gh t -mov ing  str ing degrees  o f  f r e e d o m  
is a mul t ip le  o f  8 ~2 

A possibi l i ty  o f  get t ing a r o u n d  this di f f icul ty  migh t  

be the exis tence  o f  a l t e rna t ive  consis tent  compac t i f i -  

ca t ion  schemes  which do not  place the k ind  o f  restric- 

t ions on the Varasoro  charge as the lat t ice compac t i -  
f icat ion schemes.  
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